Vancomycin Resistant *Enterococci* (VRE) screening quality assurance program: a five-year review of methods and performance

<u>Norvie Aquino</u>, Elizabeth Haremza, Debra Walker, Katherine Ryan, Allan Elsner, Juliet Elvy

Microbiology, The Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) St Leonards, NSW, Australia.

Background

VRE are strains of *Enterococci* that have developed resistance to vancomycin, a glycopeptide antibiotic used to treat serious enterococcal infections.

Vancomycin-resistant *Enter*ococcus was first described in England in 1988¹. Since then, it has increasingly become a major nosocomial pathogen worldwide. In Australia, it was reported that the percentage of *E. faecium* bacteraemia isolates resistant to vancomycin is now much higher than in all European countries².

Table 3. Items sent 2014-2018

Item number	Sample* content/s	Characteristic/s
2014:3:11A	E. faecium	VRE, vanB
2014:3:11B	E. faecium	VRE, vanA
2014:3:11C	E. faecalis	Non-VRE
2014:3:11D	E. faecium (duplicate of 11B)	VRE, vanA
2014:7:11A	E. faecium	VRE, vanB
2014:7:11B	E. faecium	VRE, vanA
2014:7:11C	E. faecalis	VRE, vanA
2014:7:11D	E. faecium	VRE, vanB
2015:3:11A	E. faecium	VRE, vanB
2015:3:11B	E. faecalis	Non-VRE
2015:3:11C	E. faecium	VRE, vanA
2015:3:11D	E. faecalis	VRE, vanB
2015:7:10A	E. faecalis	Non-VRE
2015:7:10B	E. faecium	VRE, vanB
2015:7:10C	Leuconostoc lactis	Vancomycin resistant gram-positive coccus, No VRE
2015:7:11D	E. faecium	VRE, vanA
2016:3:11A	Pediococcus pentosaceus	Vancomycin resistant gram-positive coccus, No VRE
2016:3:11B	E. faecium	VRE, vanA
2016:3:11C	E. faecalis	VRE, vanA
2016:3:11D	E. faecium and E. faecalis	VRE, E. faecalis (vanB); E. faecium (vanA)
2016:7:10A	E. faecium	Non-VRE
2016:7:10B	E. faecium	VRE, vanB
2016:7:10C	E. faecalis	VRE, vanB
2016:7:10D	E. coli, C. freundii and K. pneumoniae	NoVRE
2017:3:11A	E. faecium	VRE, vanA; Teicoplanin R (MIC 24mg/L); Vancomycin R (MIC >256 mg/L)
2017:3:11B	E. faecalis	Non-VRE
2017:3:11C	<i>E. faecalis</i> (duplicate of 11B)	Non-VRE
2017:3:11D	E. faecium	VRE, vanB; Teicoplanin and vancomycin R (MIC >256 mg/L)
2017:7:10A	E. faecalis	Non-VRE
2017:7:10B	E. faecium	VRE, vanB
2017:7:10C	<i>E. faecalis</i> (duplicate of 10A)	Non-VRE
2017:7:10D	<i>E. faecium</i> (duplicate of 10B)	VRE, vanB
2018:3:11A	E. faecalis	Non-VRE
2018:3:11B	E. faecalis	Non-VRE
2018:3:11C	E. faecalis	VRE, vanA
2018:3:11D	E. faecalis	VRE, vanB
2018:7:10A	E. faecium	Non-VRE
2018:7:10B	E. faecium	VRE, vanB

Given the importance of accurately reporting VRE, the RCPAQAP Microbiology introduced the program *"Enterococci* for identification, antimicrobial susceptibility and *van* gene detection" in 2011. It was renamed in 2013 to become the "Vancomycin Resistant *Enterococcus* (VRE) Screening" program to be more aligned with the relevant guidelines³. Participants enrolled in this program are currently from Australia, New Zealand, Asia (Hong Kong, Thailand, Malaysia, China, Singapore) and Europe (Sweden, Spain and France). Enrolments grew from 52 participants in 2011 to 96 in 2018.

Material/methods

Four lyophilised simulated samples representing rectal swabs are sent twice a year. Once reconstituted, samples are suitable for enterococcal culture and/or molecular testing. Participants are asked to perform "VRE screen" testing as per their laboratory protocol.

The RCPAQAP direct data entry is used to capture methods, results and overall comments. From 2014 to 2018, methods and algorithms used by participating laboratories to test for VRE were analysed and participant performance was assessed.

Results

100

From 2014 to 2018:

- Majority of participants used culture-based methods
- 25% to 31% of laboratories employed molecular methods and/or with culture/other methods
- Greater than 90% reported correct responses

Figure 1. 2014-2018 enrolled participants, methods

Table 1. Media used 2018 Survey 2

Table 2. Molecular detection methods used 2018 Survey 2

Media	Number of user/s	Method	Number of user/s
Bile esculin agar + vancomycin	1	AMR direct flow chip kit	1
Blood Agar	1	Ausdiagnostics: Staphylococcus + VRE (8 well)	٦
Blood Agar,Chromogenic agar	4	BDMAX ExK DNA-3 and BioGX	1
Blood Agar,Chromogenic agar,MAC,VRE broth	1	GeneXpert VanA/VanB	12
Blood Agar,Chromogenic agar,VRE broth	2	Inhouse (no details)	2
Blood Agar, Mueller Hinton	2	Inhouse (Syto 9 Fluorescence)	1
Blood Agar,VRE agar	1	Inhouse PCR (gel detection)	2
Blood Agar,VRE broth	1	Inhouse Real time PCR	5
Chromogenic agar	41	Roche LC VRE detection	3
Chromogenic agar,CNA	3		
Chromogenic agar,GrpB broth	1		
Chromogenic agar, Mueller Hinton	2		

*Sample/s would have normal flora included.

Figure 2. 2014-2018 VRE screening QAP performance

Item Number

Chromogenic agar,VRE broth	
Mueller Hinton,VRE agar	

	•
inne	lusions

- The choice of methods used, culture-based and/or molecular/other, still vary as per consideration of laboratories' relevant guidelines, test sensitivity, complexity, turnaround time and cost⁴.
- 2. Over the course of five years, whilst false positive and false negative results remain an issue for some participants, there was a high level of concordance.

References

VRE agar

VRE broth

NEGRAM AGAR, MAC

VRE agar, VRE broth

VRE broth, Azt plate with Vanc disc

1. Uttley, A.H.C., C.H. Collins, J. Naidoo, and R. C. George. 1988. Vancomycin-resistant enterococci. Lancet i:57-58

Coombs G, Bell JM, Daley D, Collignon P, Cooley L, Gottlieb T, Iredell J, Kotsanas D, Nimmo G and Robson J on behalf of the Australian group on Antimicrobial Resistance Sepsis Outcomes Programs: 2017 Report. Sydney: ACSQHC; 2019
Australian Guidelines for the Prevention and Control of Infection in Healthcare, Canberra: National Health and Medical Research Council (2019)

4. Faron, Matthew L., Nathan A. Ledeboer, and Blake W. Buchan. 2016. "Resistance Mechanisms, Epidemiology, and Approaches to Screening for Vancomycin-Resistant Enterococcus in the Health Care Setting." Journal of Clinical Microbiology 54 (10): 2436–47

RCPAQAP

The Royal College of Pathologists of Australasia Quality Assurance Programs

FIND OUT MORE RCPAQAP.COM.AU

1300782920 | microbiology@rcpaqap.com.au

NATA Accredited Proficiency Testing Scheme Provider. Number 14863 Accredited to ISO/IEC 17043:2010